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External Field Effect on the Critical Behavior 
of the Interface Between Fluid Phases t 

M. Knackstedt 2 and M. Robert 2 

The equilibrium structure of the interface between fluid phases in d dimensions 
in the presence of an external field is investigated. The equilibrium interface is 
assumed to consist of an intrinsic interface which undergoes capillary-wave 
fluctuations. It is found that in two dimensions the interfacial thickness is very 
sensitive to the choice of external field and intrinsic interface. For an intrinsic 
interface of a thickness proportional to 4, the bulk correlation length, the 
exponent co, which describes the divergence of the interracial thickness as the 
critical point is approached, depends on the scale of the external field relative 
to ~ and ranges from co = 9/32 to co = 17/32, in contrast to the prediction co = 1 
of scaling theory. When an intrinsic interface of vanishing thickness is chosen, 
co = 9/32 for any external field. This is in strong contrast to the results in three 
or more dimensions, where co is found to be independent of both the external 
field and the intrinsic interface and satisfies # = ( d - 1 ) e ) ,  with # the critical 
exponent of the surface tension, in accord with scaling theory. 

KEY WORDS: capillary waves; critical point; external field; interfacial 
thickness. 

1. I N T R O D U C T I O N  

It has long been believed that close to the critical point, the properties of 
fluid interfaces are directly related to those of the coexisting bulk phases 
and correspondingly share the universal critical properties the latter are 
well known to exhibit. Such a belief originated with van der Waals [ 1] 
and culminates in the modern generalizations and extensions [-2, 3] of 
van der Waals' original ideas, in particular in Widom's scaling theory [3] 
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of the interface. A characteristic prediction of scaling theory is that close to 
the critical point the interracial thickness is proportional to the correlation 
length of the spontaneous density (composition) fluctuations in either bulk 
phase [-4] and is, thus, independent of the size of the system and the 
presence of an external field such as gravity. 

A different approach to the problem of fluid interracial structure was 
developed by Buff et al. [5], who advocated capillary waves, which have 
no analogue in the bulk, as the proper modes of the interracial fluctuations. 
In capillary-wave theory, the interfacial thickness depends on both the size 
of the system and the presence of an external field, in contrast to the 
assumptions of the van der Waals theory. 

In accord with more recent ideas [6], these two apparently conflicting 
approaches of the van der Waals and capillary-wave theories should be 
combined into a single picture in which their contradictions are resolved. 
In this unified picture, the fluctuating bare interface of zero thickness of 
Buff et al. [5] is replaced by an interface of nonzero thickness proportional 
to the bulk correlation length. This interface, called the intrinsic interface, 
undergoes capillary-wave fluctuations as it does in the original study by 
Buff et al. This new treatment enables one to describe the complete interfa- 
cial structure without losing any aspects of the two originally conflicting 
capillary-wave and van der Waals theories. It is hoped, in such an 
amalgamation, to recapture from a single model the capillary-wave aspects 
at large distances on the one hand and the traditional critical behavior of 
van der Waals (scaling) theory on the other hand. As will be seen, such a 
hope is fullfilled in three or more dimensions but not in two dimensions. 

In Section 2, we study the planar fluid interface in an arbitrary dimen- 
sion of space. In Section 3 we analyze the case of fluids in two dimensions, 
and in Section 4, that of fluids in three and four dimensions. Our results are 
briefly discussed in Section 5 and summarized in Fig. 1. 

2. THERMAL BROADENING OF THE INTRINSIC 
INTERFACE IN AN ARBITRARY DIMENSION 

In the capillary-wave theory of the planar fluid interface [5] in d 
dimensions, the probability p(~) of a distortion ~ of an infinitely sharp 
interface separating two incompressible fluid phases is given by 

p[~(x)] ~ exp{ -/~ W[~(x)] } (1) 

where W[~(x)] is the work necessary to distort the infinitely sharp inter- 
face from z to z - ~ ( x ) ,  x is a ( d -  1)-dimensional vector describing position 
in the transverse directions parallel to the equilibrium interfacial plane, and 

= 1 / k T ,  with T the absolute temperature and k Boltzmann's constant. 
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Fig. 1. Values of co in d =  2. 

More generally, the infinitely sharp interface of the original capillary- 
wave theory can and indeed, according to current ideas described above, 
should be replaced by a diffuse interface of nonzero thickness, the intrinsic 
interface. 

We consider for simplicity, but with no loss of generality, a single- 
component liquid-vapor phase equilibrium and denote by pl(z) the equi- 
librium density profile of the intrinsic interface. Following Percus [7],  we 
write the energy change due to capillary-wave fluctuations in the form 

W[ff(x)] = Yo" f [ 1 + IVy(x)] 21 l/2 dx - -  ])0' f dx 

+fp~[z-~(x)3.u~x~(z)dr-fpi(z)Uox,(z)dr (2) 

where 7o is the bare surface tension [5],  i.e., the surface tension of the 
intrinsic interface, and Uex , is the external field taken to depend on the coor- 
dinate z only. The distorted intrinsic profile p 1 [ z - ~ ( x ) ]  is illustrated in 
Fig. 2. 

Expanding the distorted profile p~[z-~(x)] to second order in ((x), 
assuming S ( ( x ) d x  = 0  to preserve the average position of the profile and 
expanding [1 + [V~(x)]2] m to second order in IVy(x)[ 2 turns Eq. (2) into 

70 iVy(x ) [2  d x  + ~ Uext(Z ) dzdx WEC(x)l-- f ff p;(z) (3) 

840/10/2-3 
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Fig. 2. (a) Intrinsic profile p1(z) from van der Waals (scaling) theory. (b) Capillary wave 
~(x). (c) Intrinsic profile px(Z) shown in (a) distorted by capillary wave ~ shown in (b). 

Integrating by parts the second term in Eq. (3) yields 

W[~(x)]=?~ f lV~(x)12 dx-~ f P~(Z)U'*"t(z)dz f (2(x) (4) 

Assuming the fluctuations of the intrinsic interface as a whole to be 
capillary-wave-like enables one to decompose these into sums of decoupled 
surface waves: ~ (X)=Zkake  ikx. As shown by Percus [7], Eq. (4) then 
assumes the form 

W(ak) ~o~a-1 KL a 1 2 ~ a  2 [ k l 2 + ~ a  2 (5) 
k k 

with ~T the transverse edge length of the system and 

I §174 K -  - YI(Z) U;xt(Z) clz (6)  
- oo  

Note that K is positive since the two derivatives in the integrand are of 
opposite signs. 

We define a generalized capillary length I by 

1=~ (7) 

and so rewrite Eq. (5) as 

W(ak) K~LZ~d- ~ ~ ( 112 ) 2 a~, 1 + ~  -Ikl 2 (8)  
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And we note that if, following Buff et al. [-5], we choose the intrinsic inter- 
face to be a step function, i.e., p i ( z )=  P L -  Ap.  O(z), with O(z) the unit step 
function, and the external field to be that of gravity, i.e., Uext(Z)= mgz, then 
the quantity K of Eq. (6) is given by 

t" 
K = J Ap 6(z) mg dz 

= mg Ap (9) 

x~ith Ap the difference P L -  Pv between the bulk liquid and the bulk vapor 
phase densities PL and Pv, so that I reduces to the ordinary capillary length 

/ = x/27o/mg Ap, in accord with Ref. 5. 
The equilibrium average of a~ is readily found, from Eqs. (1) and (8), 

to be 

(a~)  - ~  a~ e x p [ -  W(a~)] da k 

= j'~ exp[--  W(ak) ] d a  k 

1 

= 3 K 2  'a ~(l+�89 2.1k[ 2) (10) 

leading to the mean-squared thickness of the interface 

kmax 
= 2 

k=O 
1 1 

--fl K ~ d - 1  ~k 1 -{- 112-Ikl 2 
(11) 

Result (11) enables one to determine the behavior of the interfacial 
thickness for several model intrinsic interfaces and several choices of the 
external field in any dimension of space. The case of an intrinsic interface 
of vanishing thickness and of a gravitational external field has already been 
treated [5, 8] for d =  3 as well as for general d. 

3. FLUIDS IN TWO DIMENSIONS 

In the two-dimensional version of the generalized capillary-wave 
theory, we have a fluctuating intrinsic interface separating two-dimensional 
bulk phases, the wave vector k being now simply a one-dimensional vector 
the length of which may assume the values Ikl =2~n/2 ' ,  n=  1,2,.... 
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Evaluating the sum in Eq. (11) as an integral (thermodynamic limit 
s --+ oo), we find for the square of the total interfacial thickness, 

1 ~[kmaxl dlk] 
<Z2> = 2z/~K ~o 1 + �89 2- I k2] 

1 
-2x/-~rc~Kl.arctan(!'l~ax[.) (12) 

where K is given by Eq. (6), and [kmax[ is of the order of the inverse inter- 
facial thickness [5]. 

Two limiting cases can occur: one for l-Ikm~xl >> 1 and another for 
1. Ikmax[ ~ 1. In three-dimensional fluids [9],  the former case corresponds 
to 10 3 ~ 1 7 6  while the latter holds for T c - T ~ 1 0 - 5 ~  
The original capillary-wave theory is essentially a low-temperature theory 
which can be extrapolated into the critical region, and the latter case 
corresponds to a region where the approximations of this theory can no 
longer be considered realistic 1-10], lying, moreover, in an experimentally 
inaccessible temperature range. We therefore consider only the regime 
1. Ikm~xl >> 1. 

For large k, a rc tan(k)~_~/2- I /k ,  implying from Eq. (12), and the 
above definition (7) of the generalized capillary length I: 

1 
<Z2>~ 

/~Kt 

1 
(131 

3.1. Step-like Intrinsic Profile 

The first intrinsic density profile chosen was the step-like profile of 
Buff et al. [-5], that is, 

p,(z)  = PL -- ~P O(z) (14) 

where O(z) is the unit step function. For this infinitely sharp intrinsic 
profile, one finds from Eq. (6) 

K= Ap b/ext(0 ) (15) 

Assuming that U'ext(0) is finite (an infinite U'ext(0) would lead to a vanishing 
interfacial thickness [ 11 ] ) we find, from Eq. (13), 

1 
(Z2>  ~ " ~  ( T o -  T) -(~+~)/2 (16) 

~/~oZp  
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where # and fl are the critical exponents describing the vanishing of the 
density difference Ap and the surface tension, respectively, at the critical 
point. From the known exact values fl = ~ and ~ = 1 we find that the inter- 
facial thickness L -  ( Z  2) 1/2 diverges like 

L ~ (To - T )  -9 /32  (17) 

It is assumed in deriving Eq. (17) that 70 vanishes at the critical point like 
the true surface tension and that the values of the critical exponents are not 
affected by the external field; in particular, it is assumed that/~(uex t # 0 ) =  
#(Uext-~ 0 ) =  1, which has not been proven but is most likely to be correct, 
at least for ]u~xt] small. Thus, for any external field satisfying Utext(0)< (3(), 
when an intrinsic profile of vanishing thickness is chosen, as it is in the 
original capillary wave theory of Buff et al., one finds w = 9/32 in two 
dimensions. This generalizes the result of Ref. 8, which was restricted to the 
case of gravity. 

3.2. Diffuse Intrinsic Profile 

When one chooses the intrinsic profile given by the van der Waals 
(scaling) theory, which for simplicity, we take to be described by an 
exponential (Fermi) profile with a decay length equal to the bulk correla- 
tion length ~ (see Fig. 2a), K becomes 

K = ~ j _ ~  exp Uext(Z) dz (18a) 

In a recent study [11 ], it was found that for a step-like external field 
of amplitude c, for which K reduces to 

cAp 
K =  - -  (18b) 2~ 

the value of the interracial thickness exponent is ~o = 17/32. However, when 
a linear external field was chosen with the same intrinsic density profile, the 
interracial thickness exponent was found in that same study to be 9/32. 
These unexpected results prompted us to investigate more general external 
fields. 

As an example of a more general external field, we first choose 

- -  go z < a  

ur215 g~ - - a < z < a  (19) 
a 

go z ~> a 
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For this external field, K, from Eq. (18a), is given by 

K = ~ j o  exp dz (20) 

The critical behavior of K is readily evaluated for two limiting cases: one 
when a ~ ~ and the second when a >> 4. The former corresponds to the case 
where the change in uext occurs over a scale much smaller than that of the 
bulk correlation length, while the latter treats the case where the change in 
Uex t occurs more gradually, over a distance much greater than the bulk 
correlation length. 

In the first case, the integrand in Eq. (20) can be expanded about z = 0 
and K thus becomes 

K =  Ap go (21) 
4 

from which the interfacial thickness L is found to diverge like 

L ~  (T c - T) -(~+~+ ~)/4 

= (To - T ) -  17/32 (22) 

where the exact value v = 1 of the critical exponent of the bulk correlation 
length has been used. 

For  the regime where a >> 4, K is simply 

K =  Ap g_____2o (23) 
a 

and L is readily found to diverge like 

L ~ ( T o -  T) -(~+/~)/4 

= ( T o -  T) -9/32 (24) 

A second choice of a general external field is the exponential form 

Uext (Z)  = go s g n ( z ) [ 1 -  exp 
F- Izl~] 

(25) 
L~.JJ 

where 4u, similar to the length scale a introduced in Eq. (19), is a measure 
of the distance over which the external field varies. For the external field 
(25), K is given by 

K= Ap go (26) 
4 + C  
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For small ~,, i.e., ~u~ 4, we find that the interfacial thickness can be 
described in power-law form by 

L ~ (T c - T) 17/32 (27) 

whereas in the regime ~ >> ~, we find that L is described by 

L ~ (Tc - T) -9/32 (28) 

The results for d=2 ,  summarized in Fig. 1, show that when one 
chooses a diffuse intrinsic density profile rather than the infinitely sharp 
intrinsic density profile of the original capillary-wave theory, the exponent 
co describing the divergence of the interracial thickness is strongly depend- 
ent on the choice of external field. Moreover, the distance over which the 
external field varies is found to affect the value of the critical exponent co 
[compare Eqs. (22) and (24) and Eqs. (27) and (28)]. 

It should be noted that both values of the exponent co given above, 
namely, 9/32 and 17/32, disagree severely with the prediction of the 
generalized van der Waals (scaling) theory, according to which co-  v, in 
any d, independently of any external field, so that, in d = 2, using the exact 
value of v quoted above, 

L ~ ( T  c - T )  1 (29) 

4. F L U I D S  I N  T H R E E  A N D  F O U R  D I M E N S I O N S  

The nonuniversal critical behavior of the interfacial thickness in two 
dimensions expressed by Eqs. (27) and (28) strongly suggests considering 
an arbitrary external field in both three and four dimensions. We find from 
Eq. (11) 

1 Ikla-2dlkl 
(30) 

In d=  3, this equation yields 

1 / 112 ) 
( Z 2 ) = 2 r t f l K l - - 2 1 n  1 + ~  - Ikmaxl 2 

1 

70 
(31) 
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while for d = 4, 

<z~> 1 
2rcflKlZ I 2 [kmaxl - 2-@~12 arctan { lkmaxl 

Ikmaxl 
70 

1 
LTo (32) 

From Eqs. (31) and (32) it is seen at once that 

o9 =/~/2 for d = 3 
(33) 

o9 = kt/3 for d =  4 

in full agreement with the predictions # =  ( d - 1 ) . c o  of capillary-wave 
theory for the case of a gravitational field [8] ,  as well as with the identical 
prediction [-3] of the generalized van der Waals (scaling) theory. We 
observe that in strong contrast to the case of fluids in two dimensions, 
Eq. (33) holds for an arbitrary intrinsic profile as well as for an arbitrary 
external field. 

5. CONCLUSION 

Assuming the equilibrium structure of the fluid interface to result from 
averaging capillary-wave excitations on an intrinsic interface, we have 
studied the effect of temperature on the thickness of the interface in the 
presence of an external field. 

The main result is that while the external field does not affect the 
divergence of the interracial thickness in the critical region of fluids in three 
or more dimensions (except of course, as already mentioned, extremely 
close to the critical point [-4]), its effect is dramatic in two dimensions, 
where the critical behavior is found to be nonuniversal, depending on 
the scale of the external field relative to the bulk correlation length. 
Consequently, the relation/~ = (d-1)o9 ,  which links the critical exponents 
of surface tension and interfacial thickness to the dimension of space and 
which is most probably correct in d~> 3, appears to be incorrect in d= 2, 
since in that case o9, unlike #, is strongly field dependent. 
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